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Abstract
Based on classical Lie group method, the group for a general class of variable
coefficient nonlinear diffusion–convection equation in (1 + 1) dimensions is
obtained. New symmetries are found. Seven models have been studied.

PACS numbers: 02.30.Jr, 02.20.Qs

1. Introduction

The importance of the variable coefficient nonlinear diffusion–convection equation

f (x)ut = (g(x)D(u)ux)x − k′(u)ux (1)

where

f (x), g(x) �= 0 and D(u) �= const

is well known and there is a continuing high level of interest in the construction of exact
solutions to special forms of (1) [1–4]. In equation (1), the first term on the right-hand side
describes diffusion with a generally non-constant diffusion, D(u), whereas the second term
describes convection, k(u). Equation (1) has a wide range of applications in physical and
related sciences. It describes, for the case f (x) = g(x) = 1, the vertical one-dimensional
transport of water in homogeneous, non-deformable porous media. Also it describes for the
case k(u) = const many apparently unrelated phenomena, such as heat conduction in solids
and stationary motion of a boundary layer of fluid over a flat plate [5, 6].

The functions f (x) and g(x) take into account some of the physical phenomena ignored
in the general nonlinear diffusion–convection equations [1, 2, 7]. These include propagation
of a nonlinear thermal wave in an inhomogeneous medium [6]. The most extensive table of
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symmetries for the nonlinear diffusion–convection equation, for the case f (x) = g(x) = 1,
is given in [7] and later in [1, 2] extra symmetries are found.

On using the following transformations

�
x =

∫
f (x) dx

�
t = t

equation (1) reduces to

∂u

∂
�
t

= ∂

∂
�
x

(
fgD(u)

∂u

∂
�
x

)
− k′ ∂u

∂
�
x

. (2)

Now the two arbitrary functions f and g can be combined into a single new function.
Hence equation (1) has only three free parameters instead of four. Nevertheless, here we
prefer to deal with equation (1) rather than equation (2) according to several models which
can easily be constructed and classified in terms of f (x), g(x),D(u) and k(u).

The aim of the present paper is to identify all classes of the variable coefficient nonlinear
diffusion–convection (VCNDC) equation that have nontrivial symmetry group.

2. Lie group symmetry analysis

In the present paper, classical Lie group theory [5, 8–10] is used to determine the classical
symmetries of equation (1). The conditions that the arbitrary functions f (x), g(x),D(u)

and k(u) have to fulfil for equation (1) to admit the symmetries have been achieved. These
symmetries are obtained by considering the infinitesimal transformation

u∗ = u + εη(x, t, u) + O(ε2) (3)

x∗ = x + εξ(x, t, u) + O(ε2) (4)

t∗ = t + ετ(x, t, u) + O(ε2). (5)

The invariance of equation (1) under the infinitesimal transformations (3)–(5) and the
fact that the derivatives of u are independent leads to a set of determining equations. These
determining equations are linear partial differential equations (PDEs) in η, ξ and τ . They are
given by

ξu = 0 τu = τx = 0 (6)

Dηuu + D′ηu +

(
D′′ − D′

D

)
η = 0 (7)

2ξx +

(
f ′

f
− g′

g

)
ξ − η

(
D′

D

)
− τt = 0 (8)

Dgηxx + (Dg′ − k′)ηx − f ηt = 0 (9)

and

Dg′′ξ + (D′k′ − k′′D)
η

D
+ (Dg′ − k′)ξx + 2D′gηx − Dgξxx + f ξt

− g′

g
(Dg′ − k′)ξ + 2Dgηxu = 0. (10)

The solutions of the system of equations (6)–(10) lead to the group classification of
equation (1) which was found to depend on whether the product f (x)g(x) is a constant or
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not (in fact, equation (2) may give an indication of the fact that the group classification of
equation (1) depends on whether the product of f and g equals a constant or not), which leads
to two different cases (i) and (ii) as follows:

(i)f (x)g(x) = 1

τ = (2c − A0)t + τ0 (11)

ξ = g(x)

[
c

∫
dx

g(x)
+ β1t + β0

]
(12)

and

η = A1u + A2 (13)

where the functions k(u) and D(u) satisfy the remaining conditions

(A1u + A2)k
′′ + (c − A0)k

′ − β1 = 0 (14)

and (
A1

A0
u +

A2

A0

)
= D

D′ (15)

where c,A0, A1, A2, τ0, β0 and β1 are constants to be determined according to the different
forms of the functions g(x),D(u) and K(u).

(ii)f (x)g(x) �= 1

τ = at + τ0 (16)

ξ =
√

g(x)

f (x)

[
1

2
(A0 + a)

∫ √
f (x)

g(x)
dx + β0

]
(17)

and

η = A1u + A2 (18)

where the functions g(x), k(u) and D(u) satisfy the remaining conditions

(A1u + A2)k
′′ + (c − A0)k

′ = 0 (19)(
A1

A0
u +

A2

A0

)
= D

D′ (20)

and

ξx − g′(x)

g(x)
ξ = c (21)

where a is a constant to be determined according to the different forms of the functions
f (x), g(x),D(u) and K(u). In fact, equations (14), (15), (19), (20) can easily be solved and
the different forms of D(u) and K(u) can be found. Also equation (21) should be compatible
with the expression of ξ in equation (17).

Now, it is clear that, according to our analysis, we have obtained the infinitesimals ξ, τ

and η which are expressed in terms of the functions f (x), g(x),D(u) and K(u).
Different classes of (VCNDC) equation are considered and their corresponding

infinitesimals (ξ, τ and η) are listed in tables 1–3. The results shown in tables 1–3 are found
to be totally new. Also, it should be noted that putting f (x) and g(x) equal to 1 in table 3
will lead to all the results obtained by Edwards (except for the case D(u) = const) [2]. Also,
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Table 1. Lie point symmetries for f (x) = xp and g(x) = xq where p + q �= 0 and p, q ∈ R.

D(u) k(u) τ ξ η

um un, n �= 1 A
[

(m−n+1)
1−q

ν − m
]
t + τ0 A

(m−n+1)
1−q

x Au

emu enu A
[

(m−n)
1−q

ν − m
]
t + τ0 A

(m−n)
1−q

x A

um ln(u) A
[

(m+1)
1−q

ν − m
]
t + τ0 A(m+1)

1−q
x Au

um u ln(u) − u τ0 0 0
emu u2 τ0 0 0

A and τ0 are the group constants and ν = p − q + 2,m �= 0.

Table 2. Lie point symmetries for f (x) = epx and g(x) = eqx wherep + q �= 0 and p, q ∈ R.

D(u) k(u) τ ξ η

um un, n �= 1 A[(m − n + 1)δ − m]t + τ0 −A
(m−n+1)

q
x Au

emu enu A[(m − n)δ − m]t + τ0 −A
(m−n)

q
x A

um ln(u) A[(m + 1)δ − m]t + τ0 −A
(m+1)

q
x Au

um u ln(u) − u 0 0 0
emu u2 0 0 0

A and τ0 are the group constants and δ = 1 − p
q
,m �= 0.

Table 3. Lie point symmetries for f (x)g(x) = 1.

D(u) k(u) τ ξ η

um un, n �= 1 A(m − 2n + 2)t + τ0 A(m − n + 1)g(x)
∫ dx

g(x)
+ βg(x) Au

emu enu A(m − 2n)t + τ0 A(m − n)g(x)
∫ dx

g(x)
+ βg(x) A

um ln(u) A(m + 2)t + τ0 A(m + 1)g(x)
∫ dx

g(x)
+ βg(x) Au

um u ln(u) − u Amt + τ0 Amg(x)
∫ dx

g(x)
+ (At + β)g(x) Au

emu u2 Amt + τ0 Amg(x)
∫ dx

g(x)
+ (2A + β)g(x) Au

A, τ0 and β are the group constants and m �= 0.

putting f (x) and g(x) equal to 1 in case (i) will lead directly to the group of well-known
nonlinear diffusion–convection equations

ut = (D(u)ux)x − k′(u)ux where D(u) �= const. (22)

Hence different and new classes of equation (22) could be considered. It was shown in [1, 2]
that equation (22) has travelling-wave solutions, corresponding to the symmetry generator
	 = ∂t + c∂x where c is the speed of the wave, when k(u) is either a power or exponential
function. Also, putting f (x)g(x) �= const and k(u) = const in case (ii), the group for the
inhomogeneous nonlinear diffusion equation,

f (x)ut = (g(x)D(u)ux)x

is obtained.

3. Exact solutions for the VCNDC equation

Due to (i) and (ii) different classes of the variable coefficient nonlinear diffusion–convection
equation could be studied. Seven cases will be studied.
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Case 1. Taking f (x) = xp, g(x) = xq,D(u) = um and k(u) = const, where m �= 0 and
p + q �= 0, equation (1) reduces to the inhomogeneous nonlinear diffusion equation

xput = (xqumux)x. (23)

Broadbridge et al [11] have carried out a symmetry classification of a closely related equation
to equation (23). Equation (23) may be rewritten as

ρ(x)ut = x−q(xqumux)x (24)

where equation (23) describes, in appropriately normalized units, the propagation of a thermal
wave in an inhomogeneous medium [5]. ρ(x) is the particle density of the medium and
q = 0, 1, 2 for the case of plane, axial and spherical symmetry, respectively. Some exact
solutions for equation (24) have been constructed in [12].

According to our analysis, case (ii), equation (23) admits three infinitesimal generators,
namely,

	1 = ∂t 	2 = −m

ϑ
x∂x − u∂u

and

	3 = t∂t +
x

ϑ
∂x (25)

where ϑ = p − q + 2.

The similarity variable ζ and similarity solution �(ζ ) corresponding to the infinitesimal
generator 	2 are

ζ = t u(x, t) = x
ϑ
m �(ζ ) (26)

where �(ζ ) satisfies the reduced ODE

�
′ =

[
ϑ2 + mϑ (p + 1)

m2

]
�

m+1. (27)

Integrating equation (27) and using equation (26), we obtain

u(x, t) = R0x
ϑ
m (R1 − t)

−1
m (28)

where R0 and R1 are constants.

Case 2. Putting f (x) = epx, g(x) = eqx,D(u) = um and k(u) = const, where p + q �= 0, in
equation (1) we get the inhomogeneous nonlinear diffusion equation

epxut = (eqxumux)x (29)

which describes another version of the inhomogeneous nonlinear diffusion equation, the
propagation of a thermal wave in an exponential atmosphere [5]. Equation (29) admits three
infinitesimal generators, according to our analysis in (ii), namely,

	1 = ∂t 	2 = t∂t +
1

2α
∂x

and

	3 = 1

2α
∂x +

u

m
∂u (30)

where α = p−q

2 .
The similarity variable ζ and similarity solution �(ζ ) corresponding to the infinitesimal

generator 	3 are

ζ = t u(x, t) = e
2αx
m �(ζ ) (31)
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where �(ζ ) satisfies the reduced ODE

�
′ = 4

( α

m

)2 [
1 + m

(
1 +

q

2α

)]
�

m+1. (32)

Integrating equation (32) and using equation (31), we obtain

u(x, t) = e
2αx
m (R0 − R1t)

−1
m (33)

where R0 and R1 are constants.

Case 3. Putting f (x) = g(x) = 1,D(u) = emu and k(u) = enu in equation (1) we obtain

ut = (emuux)x − n enuux. (34)

Equation (34) applies to unsaturated flow in porous media [4] which admits, according to
table 3, the infinitesimal generators

	1 = ∂t 	2 = ∂x

and

	3 = (m − n)x∂x + (m − 2n)t∂t + ∂u. (35)

The similarity variable ζ and similarity solution �(ζ ) corresponding to the infinitesimal
generator 	3 are

ζ = xt
− (m−n)

(m−2n) u(x, t) = �(ζ ) +
1

(m − 2n)
ln(t) (36)

where n �= m
2 and �(ζ ) satisfies the reduced ODE (table 3 of [2])

1

(m − 2n)
[1 − (m − n)ζ�

′] = d

dζ

[
emF

�
′ − enF

]
(37)

which can be integrated for the case n = m and using equation (36) we obtain

u(x, t) = x +
1

m
ln

[
e−mx (1 + m(c1m + x) + c2 emx)

m2t

]
(38)

where c1 and c2 are constants.
For the case n = m

2 , the invariants of the group corresponding to the generator 	3 are

ζ = x u(x, t) = F(ζ ) +
2

m
ln(t) (39)

where F(ζ ) satisfies the reduced ODE

F ′ = − d

dζ

[
e

m
2 F F ′ − 2

m
emF

]
. (40)

Integrating equation (40) and using equation (39) will result in a solution, in an implicit
form, for u(x, t) which reads

m
(−mt + 2 e− m

2 ux
)

+ 4 ln
[−2 + m e− m

2 ux
] = c1m

3 (41)

where c1 is a constant.

Case 4. Taking f (x) = x−q , g(x) = xq,D(u) = um and k(u) = u, where q �= (0, 1) and
m �= 0, equation (1) becomes

x−qut = (xqumux)x − ux (42)

where it admits, according to our analysis in (i), the infinitesimal generators

	1 = ∂t 	2 = xq∂x 	3 = 1

2

(
x

(1 − q)
+ txq

)
∂x + t∂t
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and

	4 = m

2

(
x

(1 − q)
− txq

)
∂x + u∂u. (43)

The similarity variable ζ and similarity solution �(ζ ) corresponding to the infinitesimal
generator 	4 are

ζ = t u(x, t) = �(ζ )x
−2q

m (x + (q − 1)txq)
2
m (44)

where �(ζ ) satisfies the reduced ODE

�
′ = 2

m2
(2 + m)(q − 1)2

�
m+1. (45)

Integrating equation (45) and using equation (44) will result in a solution for u(x, t) which
reads

u(x, t) = 2
−1
m x

−2q

m (x + (q − 1)txq)
2
m

[
m

(2 + m)(q − 1)2(c0 − t)

] 1
m

(46)

where c0 is a constant.

Case 5. Putting f (x) = x−1, g(x) = x,D(u) = um and k(u) = u, where m �= 0, in
equation (1) reduces it to

x−1ut = (xumux)x − ux (47)

where it admits, according to our analysis in (i), the infinitesimal generators

	1 = ∂t 	2 = x∂x 	3 = x

2
(ln(x) + t) ∂x + t∂t

and

	4 = mx

2
(ln(x) − t) ∂x + u∂u. (48)

The similarity variable ζ and similarity solution �(ζ ) corresponding to the infinitesimal
generator 	4 are

ζ = t u(x, t) = �(ζ ) (−t + ln(x))
2
m (49)

where �(ζ ) satisfies the reduced ODE

�
′ = 2

m2
(2 + m)�m+1. (50)

Integrating equation (50) and using equation (49) will result in a solution for u(x, t) which
reads

u(x, t) = 2
−1
m (−t + ln(x))

2
m

[
m

(2 + m)(c0 − t)

] 1
m

(51)

where c0 is a constant.

Case 6. Taking f (x) = e−qx , g(x) = eqx,D(u) = um and k(u) = u, where q �= 0 and
m �= 0, equation (1) becomes

e−qxut = (eqxumux)x − ux (52)

where it admits, according to our analysis in (i), the infinitesimal generators

	1 = ∂t 	2 = eqx∂x 	3 = 1

2q
(qt eqx − 1)∂x + t∂t
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and

	4 = −m

2q
(qt eqx − 1)∂x + u∂u. (53)

The similarity variable ζ and similarity solution �(ζ ) corresponding to the infinitesimal
generator 	4 are

ζ = t u(x, t) = �(ζ ) e− 2qx−2 ln[qteqx+1]
m (54)

where �(ζ ) satisfies the reduced ODE

�
′ = 2

m2
(2 + m)q2

�
m+1. (55)

Integrating equation (55) and using equation (54) will result in a solution for u(x, t) which
reads

u(x, t) = 2
−1
m e− 2qx

m (1 + qt eqx)
2
m

[
m

(2 + m)q2(c0 − t)

] 1
m

(56)

where c0 is a constant.

Case 7. Taking f (x) = x, g(x) = x,D(u) = un and k(u) = µ+1
n+1 un+1, where n �= (0,−1) and

m �= −1, equation (1) reduces to

xut = (xunux)x − (µ + 1)unux. (57)

Equation (57) admits, according to our analysis in (ii), the infinitesimal generators

	1 = ∂t 	2 = 2t∂t + x∂x

and

	3 = nx∂x + 2u∂u. (58)

The similarity variable ζ and similarity solution �(ζ ) corresponding to the infinitesimal
generator 	3 are

ζ = t u(x, t) = x
2
n �(ζ ) (59)

where �(ζ ) satisfies the reduced ODE

�
′ = 2

n2
(2 − n(µ − 1)) �

n+1. (60)

Integrating equation (60) and using equation (59), we obtain

u(x, t) =
[

nx2

2 (2 − n(µ − 1)) (c0 − t)

] 1
n

(61)

where c0 is a constant.
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